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People work with Al systems to improve their decision making, but often under- or over-rely on Al predictions
and perform worse than they would have unassisted. To help people appropriately rely on Al aids, we propose
showing them behavior descriptions, details of how Al systems perform on subgroups of instances. We tested
the efficacy of behavior descriptions through user studies with 225 participants in three distinct domains: fake
review detection, satellite image classification, and bird classification. We found that behavior descriptions
can increase human-Al accuracy through two mechanisms: helping people identify Al failures and increasing
people’s reliance on the Al when it is more accurate. These findings highlight the importance of people’s
mental models in human-AI collaboration and show that informing people of high-level Al behaviors can
significantly improve Al-assisted decision making.
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1 INTRODUCTION

Human-AlI collaboration is finding real-world use in tasks ranging from diagnosing prostate cancer
[12] to screening calls to child welfare hotlines [19, 27]. To effectively work with Al aids, people
need to know when to either accept or override an AI’s output. People decide when to rely on an
Al by using their mental models [3, 30], or internal representations, of how the Al tends to behave:
when it is most accurate, when it is most likely to fail, etc. A detailed and accurate mental model
allows a person to effectively complement an Al system by appropriately relying [37] on its output,
while an overly simple or wrong mental model can lead to blind spots and systematic failures [3, 8].
At worst, people can perform worse than they would have unassisted, such as clinicians who made
more errors than average when shown incorrect Al predictions [7, 24].

Mental models are an inherently incomplete representation of any system, but numerous factors
make it especially challenging to develop adequate mental models of Al systems. First, modern Al
systems are often black-box models for which humans cannot see how or why the model made
a prediction [54]. Second, black-box models are also often stochastic and can provide different
outputs for slightly different inputs without human-understandable reasons [1]. Lastly, people
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Fig. 1. Don Norman’s mental model framework [43] describes how designers use their mental models to
implement systems. End-users then interact with the systems and develop their own mental models of how
they believe the systems work. While this process is similar for Al models, a key difference is that an Al is not
a direct representation of a developer’s intent, but a stochastic model learned from data. This means that (1)
Al developers themselves have to make sense of what an Al system has learned through testing and iteration.
Subsequently, they can encode these insights as (2) behavior descriptions, details of how an Al performs on
subgroups of instances, that can be shown to end-users to improve human-Al collaboration.

often expect Al models to behave as humans do, which often does not match their actual behavior
[40] and makes people unaware of how an Al may fail [25, 65]. These factors make it challenging
for people to develop appropriate mental models of Al systems and effectively rely on them to
improve their decision making.

To help people collaborate more effectively with Al systems, we propose directly showing end-
users insights of Al behavior (Figure 1). We term these insights behavior descriptions, details of
an AT’s performance (metrics, common patterns, potential failures, etc.) on subgroups of instances
(subsets of a dataset defined by different features, e.g. “images with low exposure”). Behavior
descriptions can take many forms, but should help end-users appropriately rely [37] on an Al using
its output when it is most likely correct and overriding it when it is most likely incorrect. The
goal of behavior descriptions is similar to that of explainable AI (xAl), but differs in what type
of information is provided to end-users. Explainable Al attempts to describe why an Al system
produced a certain output, while behavior descriptions describe what patterns of output a model
tends to produce. Thus, XAl and behavior descriptions can be used together to support effective
human-AlI collaboration.

We hypothesize that behavior descriptions will help people better detect systematic Al failures
and improve Al-assisted decision making. Additionally, we hypothesize that people will both trust
an Al aid more and find it more helpful when shown behavior descriptions. To test these hypotheses,
we conducted human-subject experiments in three distinct domains: fake review detection, satellite
image classification, and bird classification. These three domains cover a range of data types,
classification tasks, and human and Al accuracies to isolate the effect of behavior descriptions from
domain-specific effects.

We found that behavior descriptions can significantly improve the overall accuracy of human-Al
teams through two distinct mechanisms. First, for instances with a behavior description, users can
directly correct Al failures. Second, people tend to rely more on the Al system for instances without
behavior descriptions when behavior descriptions are shown for other underperforming subgroups.
We additionally found that showing behavior descriptions had no significant impact on people’s
qualitative judgements, such as trust and helpfulness, of the Al Despite the potential benefits of
behavior descriptions, their effects are not universal and depend both on how obvious Al failures
are to a person and on a person’s ability to correct the output once they know the Al is wrong,.

In summary, this work introduces behavior descriptions, details shown to people working with
Al systems of how an Al performs (metrics, common patterns, potential failures, etc.) for specific
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subgroups of instances. We show how behavior descriptions can improve the performance of human-
Al collaboration in three human-subject experiments. These results indicate that knowing the
mental models of end-users in human-AlI collaboration is essential to understand how a human-AI
team will perform and which interventions and decision aids will be most successful.

2 BACKGROUND AND RELATED WORK

We review three main areas of work related to both creating and applying behavior descriptions.
First, we explore existing research on understanding and improving human-AI collaboration. Second,
we discuss methods for improving end-user Al understanding using explainable and interpretable
Al Lastly, we describe tools and visualizations for analyzing Al behavior that can be used to create
behavior descriptions.

2.1 Human Factors and Al Aids

When a person interacts with an Al system, they develop a mental model of how it behaves - when it
performs well, when it fails, or when it has quirky results [30]. Mental models let people effectively
work with Als by helping them decide whether to rely on, modify, or override an AI’s output.
Therefore, it is important for people to have adequate mental models of Al systems so they can
appropriately rely on an Al and override it when it is likely to fail [37]. There are various methods
for encouraging appropriate reliance of Al systems, often called trust calibration [57] techniques.

Studies have explored what factors influence people’s mental models of Al systems. Kulesza et al.
[31] found that people with more complete mental models were able to collaborate more effectively
with a recommendation system. Bansal et al. [3] focused on attributes of Al systems and found
that systems with parsimonious (simple), and non-stochastic (predictable) error boundaries were
the easiest for humans to work with. Other factors such as stated and perceived accuracy [29],
confidence values [66], and model personas [28] can also influence people’s mental models and
their reliance on Al Behavior descriptions can complement these existing findings on human-AI
collaboration, further helping people better collaborate with Al aids.

Recent methods have explored improving people’s mental models, including tutorials explaining a
task [33], tuning a model to better match human expectations [41], or adaptive trust calibration [45].
Some methods for improving mental models, such as adaptive trust calibration, use model details
such as calibrated confidence scores that can be used in conjunction with behavior descriptions.
The technique most similar to our work is Mozannar et al. [42]’s exemplar-based teaching of model
behavior. Their method learns nearest neighborhood regions around model failures to help validate
people’s mental models. Although similar, behavior descriptions are semantic, high-level insights
of model behavior discovered and validated by developers. Example-based training can fill gaps
that were not previously identified by behavior descriptions.

Like model tutorials and trust calibration, behavior descriptions aim to improve human-Al
collaboration by updating people’s mental models of Al behavior. Behavior descriptions provide
additional information to end-users about when to rely on an Al further enriching their mental
models and complementing these existing techniques.

2.2 Explainable and Interpretable Al

Al systems can be designed and explained to help people understand model outputs. For example,
interpretable model architectures allow users to inspect how a model makes predictions, while
explanations can surface factors that affect model behavior.

One approach to improving end-user model understanding is to design inherently interpretable,
or “glass-box”, models. Glass-box models can be easier to debug and trace, improving people’s
ability to understand Al predictions [54]. Despite their benefits, glass-box models can be similarly
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difficult to collaborate with, for example, a study by Poursabzi-Sangdeh et al. [48] found that more
“clear” models can actually lead to information overload and hinder people’s ability to detect Al
errors. Additionally, glass-box models may not work for more complex domains or data types such
as images and videos.

Instead, another approach is model-agnostic, post-hoc explanations of model outputs. LIME
[50] is one such method, which fits linear models to a neighborhood of instances to highlight
which features most influenced a model’s prediction. Instead of using all input features to explain a
prediction, follow-up techniques such as Anchors [51] and MUSE [35] learn sets of rules on features
that are sufficient to explain predictions for a subset of instances. Behavior descriptions also show
details about a model for subsets of instances, but instead of approximating why a model produces
certain outputs, focuses on describing what the pattern of outputs is.

Despite the insights post-hoc model explanations can provide end-users, they have been found to
have a small or even detrimental effect on the performance of Al-assisted decision making [17, 34].
Explanations have been shown to potentially increase people’s reliance on an Al, whether it is right
or wrong, leading to worse team performance than a human or Al alone [5, 26, 63, 66]. By telling
users how a model performs, behavior descriptions specifically target people’s mental models and
inform users when to rely on or override an AI’s prediction.

Behavior descriptions can be combined with existing techniques to improve human-AI collabo-
ration. For example, behavior descriptions can still be used with interpretable models or shown in
conjunction with black-box explanations.

2.3 Behavioral Analysis of Al Systems

There are numerous tools and techniques that help developers discover and fix model failures,
especially those with real-world effects such as safety concerns and biases. Behavioral analysis
enables developers to go beyond aggregate metrics, such as accuracy, to discover specific and
important behaviors [11, 49].

Interactive tools, visualizations, and algorithmic techniques have shown promise in helping
developers discover Al errors. The tools most relevant to this work are focused on exploring model
performance on a subset of data. These include systems such as FairVis [10], a visual analytics system
for discovering intersectional biases, AnchorViz [15], a visualization for semantically exploring
datasets, and Slice Finder [18], a method for automatically surfacing subsets of data with large
model loss. There are also tools tailored to specific domains, for example, Errudite [61], a visual
analytics system for discovering and testing behaviors in NLP models. More recently, crowd-based
systems such as Pandora [44], Deblinder [9], and P-BTM [38] have shown how crowdsourcing can
augment behavioral analysis tools by surfacing previously unknown model failures. Lastly, there
are algorithmic testing methods for discovering Al behaviors. A common technique is metamorphic
testing [21], which verifies the relationship between changes to an input and expected changes
in an output. Checklist [52] is one such testing tool for NLP models that creates sets of modified
instances to test if language models understand basic logic and grammar.

These model debugging techniques can be used to create behavior descriptions, statements of
model performance on subgroups of data. Additionally, analyses can be rerun on updated models
to update behavior descriptions and directly inform end-users how a model has changed [4].

3 BEHAVIOR DESCRIPTIONS

We define behavior descriptions as details of how an Al performs (metrics, common patterns,
potential failures, etc.) for a subgroup of instances. Behavior descriptions should be semantically
meaningful and human-understandable but can vary significantly between datasets and tasks. For
domains like binary classification, e.g. spam detection, they can be simple statements of accuracy
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like our system incorrectly flags marketing emails as spam 53% of the time. In more complex domains
like image captioning, they can describe specific behaviors like our system often describes mountain
climbing as skiing or our system can produce run-on sentences. The goal of behavior descriptions is
to help end-users develop better mental models of an Al and thus appropriately rely on the model —
using the Al output when it is more accurate and overriding the Al when it is more likely to fail.

In addition to what behavior descriptions contain, how they are presented to end-users can vary
and impact their effectiveness. For example, when behavior descriptions are shown can vary, from
only showing them for extreme edge cases to every instance. Similarly, behavior descriptions may
only be shown during training or for the first few uses of an Al aid. Due to the broad diversity
of potential behavior descriptions, we do not attempt to enumerate all possible forms, and focus
instead on testing some core assumptions of their efficacy.

3.1 Principles for Effective Behavior Descriptions

To design the behavior descriptions used in this work, we drew from existing studies of human-Al
collaboration. From these studies, we derived three properties behavior descriptions should have to
maximize their effectiveness. These are not the only principles, but an initial set used to design the
behavior descriptions used in this study.

The first property comes directly from the goal of behavior descriptions, to help users appropri-
ately rely on Al output. Therefore, behavior descriptions should provide information that helps
end-users decide both whether they should rely on an Al and, if the Al is wrong, how they should
override it. We summarize this principle as actionable behavior descriptions that provide end
users with concrete information they can act on when using an Al aid.

The second principle comes from studies of Al error boundaries and explainable Al Bansal
et al. [3]’s study of people’s mental models of Al systems found that models with errors that were
parsimonious (e.g. simple to define) led to more effective mental models. Separately, Poursabzi-
Sangdeh et al. [48] found that showing end-users more details about an Al reduced their ability to
detect Al errors due to information overload. Thus, behavior descriptions should aim to be simple,
short, and easy to interpret and remember.

The third and final principle comes from findings on alert fatigue and cognitive load. When
alerts or messages are shown continuously, people can suffer from alert fatigue and begin to ignore
the messages [14]. Additionally, showing people more information increases their cognitive load,
which can lead to decreased learning and performance [55, 58]. To avoid these pitfalls, behavior
descriptions should be limited and focus on the subgroups of instances with the highest impact.
Thus, the third principle is to aim for significant behavior descriptions, either common behaviors
or those with the most serious consequences.

In summary, the three design principles that we followed to create the behavior descriptions in
this work are the following:

(1) Actionable, suggesting both whether and how a person should override an Al output.
(2) Simple, aiming to be as parsimonious and easy to remember as possible.
(3) Significant, limited to behaviors that are common and/or have serious consequences.

3.2 Why Not Just Fix Al Failures?

A key question surrounding the utility of behavior descriptions is why developers would not directly
fix the systematic model failures or behaviors they discover. Modern Al systems are often stochastic,
black-box models like neural networks that cannot be deterministically “fixed” or “updated”. ML
practitioners interviewed by Holstein et al. [22] would often try to fix one problem that would
cause the model to start failing in other unrelated ways. In another empirical study, Hopkins and
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Booth [23] found that practitioners would avoid or limit model updates due to concerns about
breaking their models and introducing more failures. Challenges to fixing known model failures are
also present in research. This is most apparent with natural language processing models, which are
approaching human aptitude in many domains such as question answering and programming [6].
Despite the growing capability of NLP models, many state-of-the-art systems still encode serious
biases and harms [13] and fail basic logical tests [52] that developers have been aware of for years,
but have not been able to fix.

Fixing model failures can also require significant amounts of new training data, which tends to
be expensive and time consuming. Additionally, the specific instances needed to improve certain
model failures can be difficult to get, such as globally diverse images or accents [32]. Behavior
descriptions can be an important intermediate solution for model issues; end-users can effectively
work with an imperfect Al that developers are working to improve and fix.

Lastly, behavior descriptions can be helpful when models are updated. Model updates can be
incompatible with end-users’ existing mental models and violate their expectations of how an Al
behaves, leading to new failures [4]. Updated behavior descriptions can be deployed with a new
model to directly update end-user’s mental models and avoid decreased performance.

4 EXPERIMENTAL DESIGN

To directly test how behavior descriptions impact human-AI collaboration, we conducted a set of
human-subject experiments across three different tasks. The tasks range across dimensions such as
human accuracy, Al accuracy, and data type to reduce the chance that our results are confounded
by domain-specific differences.

4.1 Experimental Setup

To test the effect of behavior descriptions, we conducted experiments across three different classifi-
cation tasks. All three tasks shared the same core setup and only varied in the type of classification
task (binary or multiclass) and what participants were asked to label. For each task, we tested three
between-subjects conditions to isolate the effect of behavior descriptions:

e No AI: Participants were asked to classify instances without any assistance.

e AI: Participants were asked to classify instances with the help of an Al they were told was
90% accurate.

o AI + Behavior Descriptions (BD): Participants were asked to classify instances with the
help of an Al they were told was 90% accurate. Additionally, for instances that were part of a
behavior description group (10/30 instances), participants were shown a behavior description
stating the Al accuracy for that type of instance (see Section 4.1.1 for details about behavior
description groups).

Participants in every condition and task were first shown a consent form, introduced to the task,
and shown example instances and labels. Those in the condition with the AI were also shown a
screen before labeling that introduced the Al and stated its overall accuracy of 90%. The participants
were then shown and asked to label 30 instances (see Figure 3 for an example UI), 20 instances from
the overall dataset, and 5 instances each from two subsets of the data, behavior description groups,
where the Al performance was significantly worse than for the overall model (see Section 4.1.1 for
details). After labeling the 30 instances, participants completed a short questionnaire with Likert
scale questions, open-ended text responses, and an attention check question.

The experiments were conducted on Amazon Mechanical Turk (AMT) with participants from
the United States. We selected participants who had completed more than 1,000 tasks and had an
approval rating of more than 98% to ensure high-quality responses. Participants that failed the
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Participants Condition Task Main Group Group 1 Group 2
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Fig. 2. Experimental setup. Each participant was randomly assigned to a condition and dataset (3x3
between-subjects study, 25 participants per condition, 225 participants total). For each dataset, participants
saw 30 instances, 20 instances from the whole dataset with an Al accuracy of 95%, and 5 instances each from
two subsets of the dataset with an Al accuracy of 40% and 20% respectively (simulating subgroups behavior
descriptions would be useful for). In the Al + Behavior Description condition, participants were shown behavior
descriptions for instances in group 1 and 2. While the instances shown to participants were randomly chosen
from a larger subset of data, each participant saw the same number of Al errors to ensure they observed the
same Al accuracies.

attention check, a question asking which step they were currently on, were still paid, but were
excluded from the results and analysis. Although we considered providing bonuses as an incentive
for accurate responses, we found that the incentive to have the task approved was sufficient to
get good results without a bonus. We confirmed this by finding similar average accuracy on the
control condition for the reviews task, 56%, to that reported by Lai and Tan [34] on the same task
using a bonus, 51%.

The study was approved by an Institutional Review Board (IRB) process. We had a total of 225
participants, 25 per task/condition pair. The number of participants per condition was chosen using
a power analysis on the mean and standard error of the accuracy in the initial usability studies for
the interface. Of the 225 participants, we removed 13 for failing the attention check. Additionally,
we removed three other participants, across two conditions, who had an accuracy of less than 10%
(the next highest accuracy being 35%), the same as guessing randomly. We paid participants $2 for
the task, which lasted 15 minutes for an hourly compensation of $8 an hour.

4.1.1  Behavior descriptions and wizard-of-oz Al. For this work, we used behavior descriptions
stating the model accuracy for subgroups of the data for which the model performs significantly
worse than average [10, 18, 44, 52, 62]. Depending on whether the task was binary or multiclass
classification, the behavior descriptions resembled text sentences such as "the model is 20% accurate
for this type of instance" or "the model confuses these two classes 80% of the time". These types of
behavior descriptions are straightforward to create, calculating accuracy on a subset of data, and
are actionable for end-users, informing them of how likely it is that they need to override the AL

In order to control the distribution of instances and Al accuracy each participant saw, we used
a wizard-of-oz Al system, mock Al outputs, with a fixed observed accuracy. Of the 30 instances
each participant labeled, 20 were randomly chosen from the overall dataset, and the final 10 split
into two groups of 5 instances randomly selected from two subsets of the dataset which we term
behavior description groups. The Al accuracy for instances in the behavior descriptions groups was
significantly lower than the overall model to simulate the types of subgroups behavior descriptions
would be used for. Lastly, while we fixed the distribution of correct/incorrect model outputs per
behavior description group, the instances each participant saw were randomized, both sampled
from a larger set of images and randomly ordered.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 136. Publication date: April 2023.



136:8 Angel Alexander Cabrera, Adam Perer, & Jason |. Hong

Step 5 of 31: Label if the review is real or fake Step 7 of 31: Label the satellite image.

Is this review real? What is this satellite image of?

We recently stayed at the Intercontinental Hotel for

a week. The hotel was in a wonderful location and

the service was great. We found all of the staff Yes No
very helpful and prompt. We highly recommend the

Intercontinental for any travel needs whether it be T_ R

for business or pleasure. Al prediction

Al prediction: meadow

The Al confuses golf courses and meadows | -
60% of the time.

The Alisonly 40% accurate for ,  [AASEUANSEEEE—— @~ 000
reviews like this with less than 50

Show Guidelines
Show Label Examples

Fig. 3. Ul screenshots for the fake reviews (left) and satellite image classification (right) tasks. Each participant
labeled 30 instances, distributed according to the instance groups described in Figure 2 and Section 4.1.2. Both
screenshots are shown on a labeling step for the Al + Behavior Description (BD) condition and on instances
that are part of a behavior description group. In the Al condition participants are not shown the additional
text for instances in a BD group, and in the No Al condition participants are not shown the Al output. The
bird classification task used the same format as the satellite classification task shown.

The accuracy breakdown for the subgroups was the following: 95% accuracy (1/20 misclassified)
for the main group of 20 instances, 40% accuracy (3/5 misclassified) for the first behavior description
group, group 1 and 20% accuracy (4/5 misclassified) for the second group, group 2. The behavior
description groups for each task are detailed in Figure 2 and Section 4.1.2. The purpose of the
behavior description groups is to have two concrete subsets representing the type of instances for
which a behavior description would be used - these are the instances for which we show behavior
descriptions in the AI + BD condition.

The accuracy breakdown above gives an actual Al accuracy of 73.33%, not the 90% accuracy
stated to the participants, since the task would have been too long to have both an actual 90% overall
accuracy and significantly low accuracies for the two behavior description groups. We wanted to
simulate a situation where an Al is reasonably accurate, e.g. > 90%, so that a human would want to
work with it. Existing work has explored the impact of stated versus observed accuracy and found
that there is a small decrease in agreement with the Al the lower the observed accuracy [64]. Since
each condition had the same stated vs. observed accuracy discrepancy (90% vs. 73.33% respectively),
it should not impact our relative findings on the efficacy of behavior descriptions.

4.1.2  Classification tasks. We chose three distinct tasks for the study to ensure that our findings
are not tied to a specific dataset or task. The three tasks vary by data type (text/image), task type
(binary/multiclass classification), and human accuracy (human better/worse than Al). For each task
description below, we also detail what types of instances make up group 1 and group 2, the subsets
of instances (behavior description groups) for which the Al is less accurate and for which behavior
descriptions are shown in the BD condition (see Figure 2). The tasks are the following:

Fake Review Detection. The dataset of deceptive reviews from Ott et al. [46, 47] has 800 truthful
reviews and 800 deceptive reviews for hotels in Chicago. The truthful reviews were collected from
online sites such as TripAdvisor, while false reviews were collected from Amazon Mechanical Turk
workers. The objective of the task is to determine whether the review is “truthful”, written by
someone who actually stayed at the hotel, or “deceptive”, written by someone who has not. We
chose this task since it has been used in previous studies of human-AI collaboration to test the
effect of explanations [34] and tutorials [33]. BD groups were chosen from research on common
failures in language models:
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Group 1 - Reviews with less than 50 words [52].
Group 2 - Reviews with more than 3 exclamation marks [56].

Satellite Image Classification. The satellite images come from the NWPU-RESISC45 dataset
[16], which has 31,500 satellite images across 45 classes. The task for the dataset is multiclass
classification, labeling each square satellite image with a semantic class. We selected a subset of 10
classes for the task in order to show participants at least a couple instances per class. This task was
inspired by real-world human-AlI systems for labeling and segmenting satellite images [39]. The
BD groups were chosen from areas of high error in the confusion matrices from the original paper
[16]:

Group 1 - Cloud and glacier images

Group 2 - Meadow and golf course images

Bird Classification. The bird images came from the Caltech-UCSD Birds 200 dataset [60], made
up of 6,033 images of 200 bird species. As in the satellite image task, we chose a subset of 10 classes
from the dataset for multiclass classification. The task was inspired by numerous apps and products
for classifying bird species [59]. The BD groups were chosen from birds in the same family, classes
that are the most similar and difficult to distinguish:

Group 1 - Cactus Wrens and House Wrens

Group 2 - Red Bellied Woodpeckers and Red Headed Woodpeckers

4.2 Hypotheses

From the primary goal of behavior descriptions, helping end-users appropriately rely on an Al, we
formulated the following hypotheses of how we expect behavior descriptions to affect human-Al
collaboration. The hypotheses focus both on quantitative measures of performance and qualitative
opinions from participants. Our first hypothesis is that behavior descriptions will improve the
overall accuracy of human-Al teams. We hypothesize that behavior descriptions will help end-users
more appropriately rely on the AI [37], leading to improved performance.

H1. Showing participants behavior descriptions (BD) results in higher overall accuracy than just
showing the Al prediction or no AL

We hypothesize that this improved performance will primarily come from participants overriding
the systematic failures identified by behavior descriptions. By providing actionable descriptions of
when the model is most likely to be wrong, for instances in BD groups, we hypothesize that the
participants will be able to better identify and correct errors when shown behavior descriptions.

H2. The higher accuracy from showing BDs is due to a higher accuracy on instances that are part
of BD groups.

Lastly, we have a set of hypotheses on how we expect people’s perception of the Al to change when
they are shown behavior descriptions. We hypothesize that participants will find the Al to be more
helpful, will be more likely to want to use the AIL and will trust the AI more when they are shown
behavior descriptions. These hypotheses come from Yin et al. [64]’s study on accuracy and trust
in Al systems, which found that observed accuracy significantly affected trust and reliance on Al
systems.

H3a. Participants shown BDs trust the Al more than when just shown the Al output.

H3b. Participants shown BDs find the Al more helpful than when just shown the Al output.

H3c. Participants shown BDs are more likely to want to use the Al in the future than when just
shown the Al output.
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Reviews Satellite Birds
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Condition
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baseline Al accuracy complementarity condition No Al Al @ Al + Behavior Descriptions

Fig. 4. Average participant accuracy by task and condition. The vertical orange bar indicates the Al
accuracy, what would be the participant’s accuracy if they picked the Al response every time. The blue shaded
area indicates complementarity, the region where the human+Al accuracy is higher than either the human
or Al alone. We find that behavior descriptions led to higher accuracy in the reviews and birds tasks, with
complementarity in the birds task (red point in rightmost chart). The error bars represent standard error.

5 RESULTS

To assess the significance of different conditions on participant accuracy, we used ANOVA tests
with Tukey post-hoc tests to correct for multiple comparisons. For the Likert scale questions, we
used Mann-Whitney U tests with Bonferroni corrections. Lastly, we used linear models to test for
learning effects, also using a Bonferroni correction for multiple comparisons. We used a p value of
0.05 as the cutoff for significance.

5.1 Overall Accuracy

To test H1 we can compare the average human-Al team accuracy for each task across the three
conditions. Overall, we found that the AI and AI + behavior descriptions (BD) interventions have a
different effect on team performance in each task (Figure 4).

For the reviews task, there was a significant difference in accuracy across the three conditions
(Fz64 = 9.18, p < 0.001). The only significant pairwise difference was between the No Al and Al
+ BD conditions (p < 0.001, 95% C.I. = [0.06,0.22]). While the AI by itself did not significantly
improve the accuracy of the participants, Al supplemented with behavior descriptions led to
significantly higher team accuracy, supporting H1. Despite the increased performance, there was
no human-AI complementarity — higher accuracy than either the human or Al alone — as participant
accuracy at every condition was lower than the baseline Al accuracy.

In the satellite classification task there was no significant difference between conditions (Fz 67 =
0.63, p = 0.534). The baseline human accuracy without Al support was the highest across tasks,
around 90%, so there was a smaller margin to improve the accuracy of the participants using an Al
with a significantly worse accuracy.

Lastly, in the birds classification task, there was a significant difference in participant accuracy
(F265 = 3.98, p = 0.023). As in the reviews task, the only pairwise difference was between the No Al
and AI + BD conditions (p = 0.048, 95% C.I. = [0.00, 0.16]), showing how behavior descriptions can
lead to significant increases in participant accuracy using an Al and supporting H1. This increased
performance also led to complementary human-AlI accuracy, higher than that of both the Al or
human alone.

In sum, these results partially support H1, with behavior descriptions leading to significantly
higher accuracy in two of the three tasks. This suggests that while behavior descriptions will not
universally improve the accuracy of human-Al teams, they can lead to significant improvements in
certain tasks and domains.
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Fig. 5. Average team accuracy by task, condition and instance group. We further break down accuracy
by instance type (see Section 4.1.1): the main group (20 instances), and two behavior description groups (5
instances each). The average human-Al accuracy across the three groups of instances gives us an idea of how
behavior descriptions improve the performance of human-Al teams. We find that participants relied more on
the Al when shown BDs in every task. Participant performance on the different behavior description groups
was mixed, from no effect to significant improvement in group 2 birds (bottom right). These results highlight
the two effects of behavior descriptions, increasing human reliance on a more accurate Al and overriding
systematic Al errors. The error bars represent standard error.

5.2 Accuracy by Behavior Description Group

To better understand the ways in which behavior descriptions impact performance, we can look at
participant accuracy across both conditions and instances in the three different behavior description
groups described in Section 4.1.1 (Figure 5). This allows us to directly test H2 by seeing if participants
in the AI + BD condition perform significantly better on the two subsets of instances that have
behavior descriptions. The results can be seen in Figure 5. We found that this is partially true, as
the increased accuracy of the AI + BD condition was due both to higher accuracy on the behavior
description groups and instances in the main group.

In the reviews task, there was only a significant difference between conditions for instances in
the normal group (Fzes = 11.82, p < 0.001), with no differences between conditions for either
of the behavior description groups. The AI (p = 0.007, 95% C.I. = [0.03,0.24]) and AI + BD
(p < 0.001, 95% C.I. = [0.10,0.31]) conditions were significantly more accurate than the No Al
condition for instances in the main group. These results do not support H2, as the higher overall
accuracy of the AI + BD condition was primarily due to greater reliance on the Al for instances in
the main group, not higher accuracy on instances with behavior descriptions.

Despite there being no difference in overall accuracy between conditions for the satellite task,
there were differences when looking at the behavior description groups. As with the reviews task,
there was a significant difference between conditions for instances in the main group (F,¢; =
5.34, p = 0.007). Participants in both the AI (p = 0.026, 95% C.I. = [0.00,0.09] and AI + BD
(p =0.007, 95% C.I. = [0.01,0.10] conditions had a higher accuracy than participants in the No Al
condition for instances in the main group. This is the same result we found in the reviews task,
where there were significant accuracy differences for instances in the main group. Despite this
difference, the increased accuracy did not translate to a higher overall accuracy for the AI and AI +
BD conditions. Since we did not find any difference between conditions for the two BD groups,
these findings do not support H2.

Lastly, we found significant differences between conditions for multiple behavior description
groups in the bird classification task. As with the other two tasks, there is a significant difference
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Fig. 6. Likert-scale responses on perception of Al. The diverging stacked bar chart centered around
the neutral response shows that participants across all conditions and subjective measures overwhelmingly
viewed the Al favorably. There were no significant differences in user’s perception of the Al when they were
give behavior descriptions.

in accuracy between conditions for instances in the main group (Fz5 = 12.22, p < 0.001). Both Al
and AI + BD have a significantly higher accuracy than No Al but there is no significance between
Al and AI + BD. Although there is no significance for instances in group 1, we do see a difference
between conditions for instances in group 2 (Fz65 = 6.81, p = 0.002). Both the No AI and AI + BD
conditions both have a higher accuracy than just AL This shows that while participants were able
to distinguish between the two types of woodpeckers in group 2 without the Al or when informed
about the Al failures, participants trusted the Al and performed significantly worse when just
shown the Al prediction. These results support H2, as the increased accuracy on group 2 led to
higher accuracy in the Al + BD condition.

In summary, these results partially support H2. Depending on the task, the higher accuracy in
the AI + BD condition was due to a higher accuracy on instances that were part of BD groups and
and a greater reliance on the Al for instances in the main group.

5.3 Qualitative Results

After labeling the 30 instances, participants were shown a questionnaire page asking about their
opinions and feelings of the Al aid using Likert scale questions (Figure 6). Since these questions
were directly related to the Al output, they were only shown to participants in the AI and AI + BD
conditions. The questions were the following: (1) How helpful was the Al for this task? (2) How
likely are you to use this Al again in a future task? (3) How much do you trust the AI? We did
not find significant differences between the AI and AI + BD conditions for any of the Likert scale
questions across tasks. These results reject H3a, H3b, H3c, and indicate that behavior descriptions
do not significantly impact participant perceptions of Al despite differences in how participants
use Al predictions.

5.4 Additional Findings

In addition to the accuracy metrics and Likert scale responses, we collected and analyzed additional
measurements and qualitative responses to further unpack the dynamics of behavior descriptions.
Although these are post hoc, exploratory results for which we did not have hypotheses, they can
serve as inspiration for further, more formal studies.

One such factor was the time it took participants to label each instance, which can potentially
surface interesting insights when compared between conditions and behavior description groups.
Unfortunately, the time per instance had high variance and was inconsistent, with numerous
outliers. This is likely due to the way AMT workers complete tasks, as they often take breaks or
search for new HITs while working on a task [36]. Future studies could incentivize quick responses
to gather more accurate time data and measure the speed of participant responses across conditions.
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Fig. 7. Learning curves by task and condition. We fit linear models of accuracy on round number to
measure learning effects. We found that the two conditions in which BDs significantly improved performance
also had significant learning effects, the Al + BD conditions in the reviews and birds tasks (denoted by *).

We also tracked in which round each instance was labeled, (n/30), to detect any learning effects
(Figure 7). To measure learning effects, we fit a linear model of average participant accuracy for each
condition and each step. We found that for the two domains in which behavior descriptions were
effective, reviews and birds, there was also a significant learning effect for the AI + BD condition
(reviews/Al + BD: § = 0.0062, p = 0.020; birds/AI + BD: § = 0.0031, p = 0.035).

The endpoints of the learning curves also show some interesting patterns. For the reviews task,
participants in the Al and AI + BD conditions started at similar accuracies and only over time
did participants in the AI + BD condition learn to effectively work with the AI and make use of
the behavior descriptions. In contrast, in the birds classification task, participants in the AI + BD
condition were consistently better than the AI condition and improved at a similar rate over time.
Interestingly, for the satellite domain, the AI + BD condition learning curve ends at a point similar to
the No AI condition but starts significantly higher. This suggests that, while over time participants
learned the correct satellite labels or when the Al tended to fail, the behavior descriptions helped
bootstrap the learning process.

Lastly, we collected qualitative free response answers from participants about patterns of Al
behavior they noticed and general comments they had about the task. As expected, participants
in both the Al and AI + BD noticed that the Al failed in the behavior description groups. While
more participants described failures in the Al + BD condition than the AI condition, the comments
were inconsistent and did not show many significant differences between conditions. We found
an interesting pattern from comments in the birds task, where participants in the AI condition
described more general but correct patterns of Al failure. Specifically, a participant found that “the
Al is good at predicting the main class of birds, but might get the sub class incorrect,” which was the
common failure reason between the two BD groups.

6 DISCUSSION

These results show that directly informing people about Al behaviors can significantly improve
human-AlI collaboration. We hope these initial insights spark future work on understanding people’s
mental models and developing new types of behavior-based decision aids.

6.1 Effectiveness of Behavior Descriptions

Overall, the results generally supported our primary hypothesis that behavior descriptions can
significantly improve the accuracy of participants working with Al aids. Surprisingly, however,
we found that the improved accuracy came from two complementary effects: people overriding
systematic Al failures and relying more often on the Al for instances without behavior descriptions.

The first effect, helping participants fix systematic Al failures, was the initial goal of behavior
descriptions, but we found that it was inconsistent and varied significantly between conditions and
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behavior description groups. For example, in the reviews task, there was no significant accuracy
difference for instances in either behavior description group. This is likely due to the behavior
descriptions in the reviews domain not being sufficiently actionable and the participants not
knowing whether or not to override the AI when they knew it was likely wrong. On the contrary,
there was a significant difference in accuracy for instances in group 2 of the bird classification task,
where participants in the BD condition were able to fix Al failures that most participants with just
the AI did not notice. Thus, while we did find some support for this effect, participants fixing Al
failures in BD groups was often not the main driver of increased overall accuracy.

In contrast, the more consistent effect was participants in the Al + BD condition relying on the
Al more often for instances not in the BD groups (main group) compared to the AI condition. This
increased reliance on the Al when it was more accurate, on instances in the main group, contributed
to the higher overall accuracy in the A + BD conditions for the reviews and birds tasks. This was an
unexpected effect which was a factor in the higher overall accuracy for participants in the Al + BD
condition. Although unexpected, the effect is corroborated by studies on trust in Al systems that
found that low reliability, Al output that violates people’s expectations over time, decreases trust
and reliance in an Al [20]. By isolating common Al errors into well-defined, predictable subgroups,
the Al appears more reliable to people and can increase their trust and reliance.

Although two of the three domains showed an overall increase in accuracy with behavior
descriptions, there was no significant increase in the satellite classification task. We believe that
this is due to the high baseline accuracy of humans performing the task, with approximately 90%
accuracy, which left little room for improvement with a significantly less accurate Al The high
accuracy of the participants also allowed them to detect and fix the Al errors in the BD groups
without any prompting in the AI condition. In summary, while behavior descriptions can improve
performance, they are not the panacea to human-AlI collaboration — Al aids must still provide value
and complementarity to human decision makers.

6.2 Learning and Behavior Descriptions

We found that participants improved more quickly when using behavior descriptions, learning to
effectively complement the Al The primary pattern we noticed was the significant learning rate in
the AI + BD condition for the reviews and birds task, as participants quickly learned when they
should override the Al This could be an important property for Al systems that are updated often,
as new behavior descriptions could be used to directly update end-users mental models and avoid
failures from incompatible updates [4].

A secondary effect we found was a higher initial accuracy in the AI + BD condition for the
satellite and birds task. While it took time for participants in the Al condition to notice how a
model tended to fail, the participants with behavior descriptions were aware of the failures right
from the start. Even if people’s accuracy converges over time, as in the reviews task, behavior
descriptions can speed up end-user onboarding and improve early-stage performance.

6.3 Authoring Behavior Descriptions

The Al debugging techniques described in Section 2.3 can be used to create behavior descriptions,
but tools designed specifically for creating BDs could provide important benefits. For example,
behavior descriptions do not have to be Al failures, but could highlight consistent output patterns
or areas where the model performs much better than humans. Bespoke tools could also optimize
for creating behavior descriptions with effective properties such as those described in Section 3.1.
Tools customized to create behavior descriptions could optimize for these different properties.
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The types of people who create behavior descriptions can also be much broader than AI/ML
developers. With the right tools, stakeholders ranging from quality assurance engineers to domain-
specific teams could discover and deploy their own behavior descriptions. In the future, techniques
from crowdsourcing could be used to harness end-user’s own insights for generating behavior
descriptions. This could be, for example, prompting end-users to report consistent failures and
patterns that could then be aggregated and voted on [9]. The insights could be processed to
automatically generate up-to-date behavior descriptions.

6.4 Understanding and Improving Mental Models of Al

These experiments also implicitly tested the more general effect of human mental models on how
they collaborate with Als. We found that when humans have more detailed mental models of how
an Al performs, they are more likely to rely on the Al in general. This result is interesting regardless
of the use of behavior descriptions, as more experienced end-users will likely develop better mental
models of Al aids and gradually change how they rely on the AL

Developing better techniques for quantifying end-user’s mental models of Al systems can help
researchers design effective decision aids such as behavior descriptions. This work could take
inspiration from studies in HCI and psychology on cognitive modeling, mathematical models of
human cognition [2]. Cognitive models have been used in education by simulating how people learn
math to dynamically teach students [53]. For human-Al collaboration, cognitive models of how
people learn Al behavior could inform the design of decision aids such as behavior descriptions.

Our results can also guide the design of machine learning models that can more directly provide
behavior descriptions. For example, sparse decision trees could be used to directly generate behavior
descriptions to show to end-users. New algorithmic methods that are more amenable to finding
clusters of high error could lead to better human-AI collaborative systems.

7 LIMITATIONS AND FUTURE WORK

The participants in our study were Amazon Mechanical Turk workers with limited domain expertise
in the tasks they completed. Domain experts and professionals, e.g., doctors or lawyers, have deeper
expertise in their fields and may develop different mental models of Al systems they work with.
For example, they may notice Al failures more often or be less influenced by the information
provided by behavior descriptions. Future studies can explore the dynamics of using BDs with
domain experts.

Although we selected domains that reflect potential real-world examples of human-Al collab-
oration, our experiment was a controlled study in a simulated setting. The impact of behavior
descriptions may vary when applied to real-world situations with consequential outcomes [66],
such as a radiologist classifying tumors. When classification errors have a much higher cost, people
may update their mental models differently or act more conservatively when shown BDs.

Our study used one specific type of behavior description, subgroup accuracy. There are countless
variations of BDs that can be explored further, such as highlighting subgroups with high accuracy,
describing what features of an instance are correlated with failure, or suggesting alternative labels.
Future experiments could test these variations to disentangle which features of behavior descriptions
are the most effective in improving people’s performance.

Lastly, our study focused on the relatively simple domain of classification. Modern Al systems
are used in much more complex tasks such as image captioning, human pose estimation, and
even image generation. The behavior descriptions for these domains will likely look significantly
different from those tested in this work. For example, BDs for a captioning model might focus on
grammatical issues and object references rather than statistical metrics. The impact of behavior
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descriptions will likely vary significantly in these domains, and specific studies could explore both
their effect and optimal designs.

8 CONCLUSION

We introduce behavior descriptions, details shown to people in human-Al teams of how a model
performs for subgroups of instances. In a series of user studies with 225 participants in 3 distinct
domains, we find that behavior descriptions can significantly improve human-AlI team performance
by helping people both correct Al failures and rely on the AI when it is more accurate. These results
highlight the importance of people’s mental models of Al systems and show that methods directly
improving mental models can improve people’s performance when using Al aids. This work opens
the door to designing behavior-based Al aids and better understanding how humans represent,
develop, and update mental models of Al systems.
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A ADDITIONAL STUDY DETAILS

To improve the reproducibility of this work, we include additional details about the study here.
Table 1 shows the final count of participants per condition after removing those who did not pass
the attention check. Table 2 shows the specific language used for each behavior description in each
task. Lastly, Figure 8 shows the specific instructions shown to participants before labeling for each
task and the subsets of labels used in the two multiclass tasks.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 136. Publication date: April 2023.


https://doi.org/10.1145/2939672.2939778
https://ojs.aaai.org/index.php/AAAI/article/view/11491
https://ojs.aaai.org/index.php/AAAI/article/view/11491
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.3758/BF03194060
https://doi.org/10.3758/BF03194060
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1007/s10648-010-9128-5
https://doi.org/10.1145/2837185.2837216
https://doi.org/10.1016/j.patter.2020.100049
https://doi.org/10.1002/acp.1726
https://doi.org/10.1002/acp.1726
https://doi.org/10.1109/CVPR.2015.7298658
https://www.aclweb.org/anthology/P19-1073
https://doi.org/10.1145/3319616
https://doi.org/10.1145/3377325.3377480
https://doi.org/10.1145/3290605.3300509
https://doi.org/10.1145/3432945
https://doi.org/10.1145/3351095.3372852

136:20 Angel Alexander Cabrera, Adam Perer, & Jason |. Hong
Table 1. The number of participants per condition after removing failed attention checks.
Reviews Satellite Birds
No Al 24 23 22
Al 23 24 23
Al + BD 23 25 25
Table 2. The specific behavior descriptions used for each behavior description group.
Reviews Satellite Birds
Group 1 | The Alis only 40% accu- | The AI confuses golf | The AI confuses Cac-
rate for reviews like this | courses and meadows | tus Wrens with House
with less than 50 words. | 60% of the time. Wrens 60% of the time.
Group 2 | The Alis only 20% accu- | The Al confuses glaciers | The AI confuses Read
rate for reviews like this | and clouds 80% of the | Headed @ Woodpecker
with more than 3 excla- | time. with Red Bellied Wood-
mation marks. pecker 80% of the time.
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Reviews

Your task is to try to predict whether a hotel review is real or fake.
A real review is written by someone who actually stayed at the hotel.
A fake review was written by someone who did not. Birds

Here are some rules to help you detect fake reviews:
Your task is to label the image of a bird.

Fake reviews:
There are ten possible labels for birds:
« Focus on external factors like family, vacation, business
* Have more emotional words —
« Use more verbs like sleep, eat, stay
« Use more superlatives like "best", "worst"

Real reviews:

« Use more concrete language, especially about location and configuration, e.g.
small bathroom, large bed, etc.

You may click the "Show Guidelines" button at the bottom of the screen

to show these rules later. American Goldfinch Common Yellowthroat Ame;;t‘:;r; ::cr:ee rtoec‘l

Your task is to label what is in a satellite image.

Here are all the labels with example images:

Red eyed Vireo Bank Swallow Chipping Sparrow

airplane basketball_court beach cloud

golf_course meadow river ship

Red bellied Woodpecker

glacier stadium

Satellite

Fig. 8. The instructions shown to participants for each task before labeling.
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Cactus Wren House Wren Red headed Woodpecker
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